The slope of a line, also known as the gradient of a line is the ratio of the change in the vertical values to the horizontal values of the given points.
The points given are
![(11,-4)\text{ and (-5,9)}](https://img.qammunity.org/2023/formulas/mathematics/college/l0d9cgkfhqe9t8ly9jlq5dvf4mnoi8pwjr.png)
The horizontal values are
![x_1=11,x_2=-5](https://img.qammunity.org/2023/formulas/mathematics/college/foijh1dzbgwdkkcc0xftc99y5bya8vpnvs.png)
The vertical values are
![y_1=-4,y_2=9](https://img.qammunity.org/2023/formulas/mathematics/college/79nuhc2b9tdwcf7s3bm5ds9lgech3rabk7.png)
We can now apply the formula to compute the slope
![\text{slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/x8v52dcr18u40wxqmdrkiv958nucq58v09.png)
Hence
![\text{slope}=(9-(-4))/(-5-11)](https://img.qammunity.org/2023/formulas/mathematics/college/d21tluy89q94c0cxf9yp3b1acq9rlsizwq.png)
Thus
![\text{slope}=(13)/(-16)=-0.8125](https://img.qammunity.org/2023/formulas/mathematics/college/xsu2hn6y4uc9epg82ohfrj73pc006w4c4x.png)
Thus, the slope rounded to the nearest tenths place will be
![-0.8](https://img.qammunity.org/2023/formulas/mathematics/college/npbq4gmxegjbqbojl6ph5h5nmjugkqzro8.png)
The slope is -0.8