![3x^2+10x-8](https://img.qammunity.org/2023/formulas/mathematics/college/vjxo1bwwtxu3p9lvw7d9265ks47o1cv4bg.png)
To factor an equation in the form:
![ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/knmog89o03f8dx9fluvbqb64q9rt61y6kp.png)
1. You can start by factor the term b as the add of two terms that multiplying give: -24
![a\cdot c=3\cdot(-8)=-24](https://img.qammunity.org/2023/formulas/mathematics/college/ys16gvhjnhg8dh1xfur0mnjpcvhf5jvk45.png)
and the adding = 10
in this case could be 12 and -2
you get:
![3x^2+(12-2)x-8](https://img.qammunity.org/2023/formulas/mathematics/college/nq1gnhugr2zdczwlfbg2jqnkf417yj0tld.png)
![3x^2+12x-2x-8](https://img.qammunity.org/2023/formulas/mathematics/college/q5sgy0tpxpzjl39m8joi7bcjlgi2mh6ovi.png)
2. You can factor then finding the greatest common denominator by grouping the first two terms and the last two:
![(3x^2+12)-2x-8](https://img.qammunity.org/2023/formulas/mathematics/college/99bljlhw0fzekt8q89e6vw4jl4hd8pcnqy.png)
To the first two terms you have the gratest common denominator 3x and the second gruop -2
![3x(x+4)-2(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/xdu6dad0oi93omngebpg7hzi9i596362ip.png)
Then you finally factor the greatest common denominator:
The final factor is:
![(x+4)(3x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/nyp88je1n4spt1vbjkvc9wflsj4qnbaxxl.png)