178k views
5 votes
Simplify each expression. (by using the reciprocal identities, quotient identities, and pythagorean identities.)

Simplify each expression. (by using the reciprocal identities, quotient identities-example-1
User Sami Issa
by
3.4k points

1 Answer

0 votes

37)


(\sec x)/(\tan x+\cot x)

First, we will simplify the denominator

tanx + cot x

tanx = sinx/cosx and cotx = cosx / sinx


(\sin x)/(\cos x)+(\cos x)/(\sin x)=\frac{\sin ^2x+\cos ^2x}{\text{cosxsinx}}

sin²x +cos²x = 1


=(1)/(\cos x\sin x)

substitute back to the original expression


(\sec x)/(\cos x\sin x)

but secx = 1/cosx


(1)/(\cos x)dividedby(1)/(\cos x\sin x)
=(1)/(\cos x)*\cos x\sin x


=\sin x

39)


(1-\sin ^2x)/(\cos x)

1 - sin²x = cos²x

substitute the above into the original expression


(\cos ^2x)/(\cos x)


=\cos \text{ x}

40)


(\csc ^2x-1)/(\csc ^2x)

csc²x - 1 = cot²x

substitute the above into the original expression


(\cot^2x)/(\csc^2x)

But 1 + tan²x = cot²x

1 + tan²x

= 1 + sin²x/cos²x

= sin²x+cos²x /cos²x

=1 /cos²x

substitute into the expression


((1)/(\cos^2x))/(\csc ^2x)

1/cos²x ÷ csc²x

but csc²x = 1/sin²x

1/cos²x ÷ 1/sin²x

1/cos²x (sin²x)


(\sin ^2x)/(\cos ^2x)


=\tan ^2x

38)


(1+\sin x)/(\cos x)+(\cos x)/(\sin x-1)

Find the lcm


((\sin x-1)(1+\sin x)+(\cos x)(\cos x))/(\cos x(\sin x-1))


(\sin x+\sin ^2x-1-\sin x+\cos ^2x)/(\cos x(\sin x-1))

Re-arrange the numerator


(\sin x-\sin x-1+\sin ^2x+\cos ^2x)/(\cos x(\sin x-1))
(-1+\sin ^2x+\cos ^2x)/(\cos x(\sin x-1))

But, sin²x+cos²x=1


(-1+1)/(\cos x(\sin x-1))

= 0

User Flogvit
by
3.3k points