The midpoint formula for a segment is:
![x_m,y_(_m)=((x_1+x_2))/(2),((y_1+y_2))/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/t67zh4z97enzktoaoleyd8pqyp4adonyii.png)
apply to points R and P
![\begin{gathered} x_m,y_m=((5+3))/(2),((8+6))/(2) \\ x_m,y_m=(8)/(2),(14)/(2) \\ x_m,y_m=(4,7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6c62o5pl87y56iac0ixdavnkf5m9y2e1cg.png)
using the definition of slope find the slope of the segment
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
apply to points R and P
![\begin{gathered} m=(8-6)/(5-3) \\ m=(2)/(2) \\ m=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bn7xroht6o8kn80j14s7smo17glpjkl54b.png)
to lines are parallel when the slopes are the same
![\mleft\Vert m=1\mright?](https://img.qammunity.org/2023/formulas/mathematics/high-school/z8baywsxtfvcqt0ks0cp0vyxcyp79idye8.png)
two lines are perpendicular when the product of the slopes is equal to -1
![\begin{gathered} m\cdot\perp m=-1 \\ 1\cdot\perp m=-1 \\ \perp m=-(1)/(1) \\ \perp m=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w2ccp163j68of8ym207x879idmmmh7n8ly.png)