ANSWER
![\frac{2\sqrt[]{11}}{11}](https://img.qammunity.org/2023/formulas/mathematics/college/liolkgv37m56uyimzzbtsu9omm2bi6be69.png)
Step-by-step explanation
To rationalize the denominator of the fraction simply means that we want to write the fraction in such a way that the denominator is not a radical.
To do this, multiply the given fraction by a fraction whose numerator and denominator are made up of the denominator of the given fraction.
That is:
![\begin{gathered} \frac{2}{\sqrt[]{11}}\cdot\frac{\sqrt[]{11}}{\sqrt[]{11}} \\ \Rightarrow\frac{2\cdot\sqrt[]{11}}{\sqrt[]{11}\cdot\sqrt[]{11}} \\ \Rightarrow\frac{2\sqrt[]{11}}{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wa0g5vmalsza72h0aiax1y3d56zfca0jva.png)
That is the answer.