Given:
the perimeter of a rectangle is
![36\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/8dbe911nzpei0htu762e4esgkd3l91ji93.png)
The length of the rectangle is 4 cm more than its width.
Required:
We have to find the dimension of the rectangle which is the length and width of the rectangle.
Step-by-step explanation:
Let the width of the rectangle be
![x\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/663f89ru4xzyiotn4uo1m9tx191t3a6yx8.png)
Then the length of the rectangle will be
![(x+4)\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/wg1wj887pgugsymcw66oxi2czcu0e59trs.png)
Now we use the formula for the perimeter of a rectangle to find the required answer.
Then proceed as follows:
![\begin{gathered} 2(\text{ length}+\text{ width\rparen}=36 \\ \Rightarrow2\lbrace(x+4)+x\rbrace=36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t1x028z2oqdp1f5yza5z3wpqosmcs0thzp.png)
![\begin{gathered} \Rightarrow\lbrace x+4+x\rbrace=(36)/(2) \\ \Rightarrow2x+4=18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dnlfuj986bwlpzpbj0rcb3uht4ls04sv65.png)
![\begin{gathered} \Rightarrow2x=18-4 \\ \Rightarrow2x=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mt2qbv2r4c06ts5gemjc10devpfgh5emjv.png)
![\begin{gathered} \Rightarrow x=(14)/(2) \\ \Rightarrow x=7\text{ cm.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rb13ano9astgns18ndc0wzy0otav16gkwt.png)
Therefore the width of the rectangle is
![7\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/10h0uuil5vpmb6kygwe6gtgvdbry7funfa.png)
And the length of the rectangle is
![x+4=7+4=11\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/ji2qno6dpgrxpofv9w6pbnue0b0fl8q9pz.png)
Final answer:
Hence the final answer is
![7\text{ cm and }11\text{ cm.}](https://img.qammunity.org/2023/formulas/mathematics/college/vhjj9zyzhl45q61v30vmqtwqy6pnzfitap.png)