Part e
we have the function
![P(x)=-2x^2+32x-110](https://img.qammunity.org/2023/formulas/mathematics/college/4bt16woz5v2053vurge5pqymwwhp4tsox8.png)
The given function represents a vertical parabola, open downward
The vertex represents a maximum
so
Convert the given equation into vertex form
step 1
Factor -2
![P(x)=-2(x^2-16x)-110](https://img.qammunity.org/2023/formulas/mathematics/college/v4r9rgqwrlwhlcs7vmxklhteo5evswjfao.png)
step 2
Complete the square
![\begin{gathered} P(x)=-2(x^2-16x+64-64)-110 \\ P(x)=-2(x^2-16x+64)-110+128 \\ P(x)=-2(x^2-16x+64)+18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e45cu6zux92j9zsjssb9ljqhxqfjb8woou.png)
step 3
Rewrite as perfect squares
![P(x)=-2(x-8)^2+18](https://img.qammunity.org/2023/formulas/mathematics/college/q3o1eysuoah03odwj48l3bfs039m3ajlu5.png)
The vertex is the point (8,18)
That means
8 is the number of games in hundreds -------> 800 games
18 is the profit in ten thousand ------> 18*10,000=$180,000
so
The maximum profit is $180,000 for 800 games