Given:
There are 4 equations.
To find:
The complex roots.
Step-by-step explanation:
A) Considering option A,
![3x^2+2=0](https://img.qammunity.org/2023/formulas/mathematics/college/9rkf1dyf0lmp0r4m6yhoptup98o51nrbz2.png)
Let us find the discriminant value.
![\begin{gathered} \Delta=b^2-4ac \\ =0-4(3)(2) \\ =-24<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6tkr1puydpgzokxgxuak2beefiveiyxhp0.png)
Since it is negative. So, it has complex roots.
B) Considering option B,
![\begin{gathered} 3x^2-1=6x \\ 3x^2-6x-1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j6jejq70jm7lu2tc1yo1fs6mxampomnlqw.png)
Let us find the discriminant value.
![\begin{gathered} \Delta=b^2-4ac \\ =(-6)^2-4(3)(-1) \\ =48>0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/43x2puw3jxqcba8bfjtfu1xfwstrcqnv15.png)
Since it is positive. So, it has real roots.
C) Considering option C,
![\begin{gathered} 2x^2-1=5x \\ 2x^2-5x-1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ycum7rt5ftew2jkijlwwt35nwwwqggyw7a.png)
Let us find the discriminant value.
![\begin{gathered} \Delta=b^2-4ac \\ =(-5)^2-4(2)(-1) \\ =33>0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vd6657onul0zuf4t27td90fxbs5jdlftij.png)
Since it is positive. So, it has real roots.
D) Considering option D,
![\begin{gathered} 2x+1=7x \\ 5x=1 \\ x=(1)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpog9rawekrpaz9a9l8xtdb08i6a47k7kw.png)
So, it has a real solution.
Final answer:
Option A has complex roots.