Step-by-step explanation:
To solve exponential equations we have to use the properties of the logarithms:
![2^x=3](https://img.qammunity.org/2023/formulas/mathematics/college/yzoibko3je9rk4nibbvckpbst6bfqvle69.png)
First we apply log on both sides of the equation:
![\log (2^x)=\log (3)](https://img.qammunity.org/2023/formulas/mathematics/college/f480azupc8xr6x9p6akmwzwehnfkw9shzd.png)
Now we use the logarithm of a power property:
![\log (a^b)=b\log (a)](https://img.qammunity.org/2023/formulas/mathematics/college/n9ts64kc1avqclbmo376emhklpp2eu26x1.png)
For this equation:
![x\log (2)=\log (3)](https://img.qammunity.org/2023/formulas/mathematics/college/yiqa9fyqvv15utbe1v688rcwx1nx054c9s.png)
And divide both sides by log(2):
![x=(\log (3))/(\log (2))\approx1.585](https://img.qammunity.org/2023/formulas/mathematics/college/du9z0ri9or37n8waiew62eqa9m9o33qqk0.png)
Anwers:
• (a) ,x = log(3)/log(2)
,
• (b) ,x = 1.585