Part (i)
Free body diagram of the 1.5 kg block;
Part (ii)
Only 1 force is acting on the pulley is the weight of the block attached with the sting. The torque acting on the pulley is given as,
![\begin{gathered} \tau=F* r \\ =Fr\sin \theta \\ =mgr\sin \theta \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/adsssf75qmyb4c9jcjd8iv4r8fg0irk4bk.png)
Here, g is the acceleration due to gravity and the θ is the angle between force F and r (as force is acting tangentially hence θ=90°)
Substituting all known values,
![\begin{gathered} \tau=(1.5\text{ kg})*(9.8\text{ m/s}^2)*(20\text{ cm})*\sin (90\degree) \\ =(1.5\text{ kg})*(9.8\text{ m/s}^2)*(20\text{ cm})*(\frac{1\text{ m}}{100\text{ cm}})*1 \\ =2.94\text{ N}\cdot m \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/clo46oe89cclm9wmk14yuhie581d2zphua.png)
In rotational dynamics torque is given as,
![\tau=I\alpha](https://img.qammunity.org/2023/formulas/physics/college/li5ossiz92yf3ur2n8f8805dn17aal40mr.png)
Here, I is the moment of inertia of the pulley (I=2 kg.m²) and α is the angular acceleration.
The angular acceleration is given as,
![\alpha=(\tau)/(I)](https://img.qammunity.org/2023/formulas/physics/college/ky7vzi87tdyztq8yhugujer033fbqap73u.png)
Substituting all known values,
![\begin{gathered} \alpha=\frac{2.94\text{ N.m}}{2\text{ kg.m}^2} \\ =1.47\text{ rad/s}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sczxx40nfzajpq0rb8dtldkqzzmuc4oqa5.png)
The angular velocity is given as,
![\omega=\alpha t](https://img.qammunity.org/2023/formulas/physics/college/72l3p9dijdbz8g00583fg3aufq8estdgk1.png)
Here, t is the time.
Substituting all known values,
![\begin{gathered} \omega=(1.47\text{ rad/s}^2)*(4.2\text{ s}) \\ =6.174\text{ rad/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/luje2arcmc36ezjnes96q4wue24w2l5bfu.png)
Therefore, the angular velocity of the pulley is 6.174 rad/s.
The angular displacement of the pulley in 4.2 s is given as,
![\Theta=\omega t](https://img.qammunity.org/2023/formulas/physics/college/ziegojqnyr2cfkpj09cd9vhakfgqzvec47.png)
Substituting all known values,
![\begin{gathered} \Theta=(6.174\text{ rad/s})*(4.2\text{ s}) \\ =25.9308\text{ rad} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4olv9zatrdou4jspwwchillj27byvao3j7.png)
The number of revolutions of the