102k views
3 votes
To find the numerical value of the log expressionIt isLog a=-3 log b=-9 log c =3

To find the numerical value of the log expressionIt isLog a=-3 log b=-9 log c =3-example-1

1 Answer

5 votes

Given:

log a=-3

log b=-9

log c =3

To find the value of


\log (a^7b^6)/(c^2)

Since, log a=-3, log b=-9, log c =3

We get,


\begin{gathered} a=e^(-3) \\ \Rightarrow a^7=e^(-21) \\ b^{}=e^(-9) \\ \Rightarrow b^6=e^(-54) \\ c=e^3 \\ \Rightarrow c^2=e^6 \end{gathered}

Using these values in the given expression we get,


\begin{gathered} \log ((e^(-21)e^(-54))/(e^6))=\log (e^(-21)^(-54-6)^{}) \\ =\log (e^(-81)) \\ =-81 \end{gathered}

Hence, the answer is -81.

User Mike Sallese
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories