102k views
3 votes
To find the numerical value of the log expressionIt isLog a=-3 log b=-9 log c =3

To find the numerical value of the log expressionIt isLog a=-3 log b=-9 log c =3-example-1

1 Answer

5 votes

Given:

log a=-3

log b=-9

log c =3

To find the value of


\log (a^7b^6)/(c^2)

Since, log a=-3, log b=-9, log c =3

We get,


\begin{gathered} a=e^(-3) \\ \Rightarrow a^7=e^(-21) \\ b^{}=e^(-9) \\ \Rightarrow b^6=e^(-54) \\ c=e^3 \\ \Rightarrow c^2=e^6 \end{gathered}

Using these values in the given expression we get,


\begin{gathered} \log ((e^(-21)e^(-54))/(e^6))=\log (e^(-21)^(-54-6)^{}) \\ =\log (e^(-81)) \\ =-81 \end{gathered}

Hence, the answer is -81.

User Mike Sallese
by
3.2k points