21.8k views
1 vote
Find the inverse of the matrix below. You must do this by hand and show all work to earn full credit. Give exact answers. No graphing calculator!

Find the inverse of the matrix below. You must do this by hand and show all work to-example-1
User Jwilner
by
4.6k points

1 Answer

1 vote

The given matrix is,


\:A=\:\begin{pmatrix}3&5\\ \:2&4\end{pmatrix}

Therefore,


\begin{gathered} \mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}: \\ \begin{equation*} \quad\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}^(-1)=\frac{1}{\det\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}}\begin{pmatrix}d\: & \:-b\: \\ -c\: & \:a\:\end{pmatrix} \end{equation*} \\ =\frac{1}{\det \begin{pmatrix}3&5\\ 2&4\end{pmatrix}}\begin{pmatrix}4&-5\\ -2&3\end{pmatrix} \end{gathered}

Where,


\begin{gathered} \det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=(3*4)-(2*5)=12-10=2 \\ \therefore\det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=2 \end{gathered}

Hence,


=(1)/(2)\begin{pmatrix}4 & -5 \\ -2 & 3\end{pmatrix}=\begin{pmatrix}(1)/(2)*4 & (1)/(2)*-5 \\ \:(1)/(2)*-2 & (1)/(2)*4\end{pmatrix}=\begin{pmatrix}2 & -(5)/(2) \\ -1 & (3)/(2)\end{pmatrix}

Therefore, the answer is


A^(-1)=\begin{pmatrix}2 & -(5)/(2) \\ -1 & (3)/(2)\end{pmatrix}

User Shane Powell
by
5.7k points