The exponential decay formula is:
![y=a(1-r)^x^{}](https://img.qammunity.org/2023/formulas/mathematics/college/hfncti5vylxjo8kqu8ed17igwe417z1znz.png)
where y and x are the variables, a is the initial value, and r is the decay rate (as a decimal)
In the case of the values of a computer, the initial value is 960, that is, a = 960. y represents the value of the computer and x represents time. Substituting with x = 1, y = 720, and a = 960, we wet:
![\begin{gathered} 720=960\cdot(1-r)^1 \\ (720)/(960)=1-r \\ 0.75=1-r \\ r=1-0.75 \\ r=0.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/agjy8akcl5uf20ysuosovprjxmtixfz8bd.png)
Now we can check if this model predicts correctly the other values of the table.
![\begin{gathered} y=960(1-0.25)^2=540 \\ y=960(1-0.25)^3=405 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i8gd9vizy5trot57mwbccjydk8wsjotss1.png)
These results show that the value of the computer decay by a constant percentage rate per year.
The equation is:
![y=960(1-0.25)^x=960(0.75)^x](https://img.qammunity.org/2023/formulas/mathematics/college/kxta5k5hna7qe2602lg4gxuny079is23o1.png)