47.2k views
15 votes
Use the given information to prove the following theorem.

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
We let be any point on line , but different from point .

Use the given information to prove the following theorem. If a point is on the perpendicular-example-1
User Dmitrii B
by
4.2k points

2 Answers

1 vote

Let's proof

PQ is the perpendicular bisector Hence

  • CQ=DQ(Bisected sides)

Now apply Pythagorean theorem


\\ \tt\hookrightarrow PQ^2+QD^2=PD^2--(1)


\\ \tt\hookrightarrow PQ^2+CQ^2=PC^2

As QD=CD


\\ \tt\hookrightarrow PQ^2+QD^2=PC^2--(2)

From (1) and (2)


\\ \tt\hookrightarrow PC^2=PD^2


\\ \tt\hookrightarrow PC=PD

User Macil
by
5.1k points
6 votes

Answer:

Given
\overline{\rm PQ} is the
\perp bisector of
\overline{\rm CD}


\overline{\rm CQ}=\overline{\rm CD}

⇒ ΔPQD ≅ ΔPQC

⇒ CP = PD

Explanation:

Given
\overline{\rm PQ} is the
\perp bisector of
\overline{\rm CD}


\overline{\rm CQ}=\overline{\rm CD}

⇒ ΔPQD ≅ ΔPQC

⇒ CP = PD

User Nikola Gedelovski
by
4.3k points