37.2k views
2 votes
The cosine of an angle is -3 over 7in Quadrant II. Find the exact value of sine.

User Maxmc
by
3.9k points

1 Answer

0 votes

Given the following value


\cos\theta=-(3)/(7)

We want to calculate


\sin\theta

To calculate the sine of the angle, we can use the following identity:


\cos^2\theta+\sin^2\theta=1

If we substitute the given cosine value on this identity, we have:


(-(3)/(7))^2+\sin^2\theta=1

Solving for the sine:


\begin{gathered} (-(3)/(7))^2+\sin^2\theta=1 \\ (9)/(49)+\sin^2\theta=1 \\ \sin^2\theta=1-(9)/(49) \\ \sin^2\theta=(49)/(49)-(9)/(49) \\ \sin^2\theta=(40)/(49) \\ \sin\theta=\pm\sqrt{(40)/(49)} \\ \sin\theta=\pm(2√(10))/(7) \end{gathered}

Since the angle belongs to the quadrant II, the value of the sine is positive, therefoer, the sine of our angle is:


\sin\theta=(2√(10))/(7)

User Minux
by
4.2k points