We first create a system of equations that can represent the problem given.
We let x represent the amount of chocolates, in pounds, and y be the amount of mixed nuts, also in pounds. Colin has a total of 10-lb bag of trail mix. We can write an equation representing this as:
![x+y=10](https://img.qammunity.org/2023/formulas/mathematics/college/uu2ngrzj79x89eegq04pdry1wvzr10sobs.png)
Chocolate costs $3.00 per pound while mixed nuts cost $6.00 per pound. Colin's total budget is around $5.40 per pound. This can be represented in equation as:
![\begin{gathered} 3x+6y=10(5.40) \\ 3x+6y=54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4qvrjt2yjp3kfzloy6o6nyhsboo1n40ccw.png)
Hence, we now have the system of equations written as:
![\begin{gathered} x+y=10 \\ 3x+6y=54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/64hlizwktt8cgcwpuqyukf9wbn6dz7clok.png)
Solve the system of equations using methods of elimination, as follows:
![\begin{gathered} -3(x+y=10) \\ 3x+6y=54 \\ \\ -3x-3y=-30 \\ 3x+6y=54 \\ \\ 3y=24 \\ y=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4yswuhhtvit2mvs2h8tl5bipblq6519x71.png)
![\begin{gathered} x+8=10 \\ x=10-8 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/geijc03yyatjjp3nelmdegng19k4j54ft1.png)
Therefore, Colin used 2 pounds of chocolates and 8 pounds of mixed nuts for this 10-lb trail mix.