177k views
5 votes
Can somebody please help me simplify for number 8SHOULD BE POSITIVE EXPONENT

Can somebody please help me simplify for number 8SHOULD BE POSITIVE EXPONENT-example-1

1 Answer

2 votes

The expression is given as,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4

Distributing the power inside the bracket ,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^3y^(-4))\text{ }*(2^(-1)x^(-3)y^(-3))^{}\rbrack^4 \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^3y^(-4))^4\text{ }*(2^(-1)x^(-3)y^(-3))^4\rbrack \end{gathered}

Simplifying further,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^(12)y^(-16))*(2^(-4)x^(-12)y^(-12))\rbrack

Rearranging the like terms,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)*(x^(12)\text{ }*\text{ }x^(-12))*\text{ (}y^(-16)\text{ }*\text{ }y^(-12))

By using law of exponents,


\begin{gathered} x^a* x^b=x^(a+b) \\ x^0=\text{ 1} \end{gathered}

Therefore,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }* x^(12-12)* y^(-16-12) \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }* x^0* y^(-28) \end{gathered}

Further,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }y^(-28) \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=\text{ }(1)/(16y^(28)) \end{gathered}

User Deysi
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories