Given:
A(1,-1), B(5,-3), C(7,1), and D(3,3)
Area of ABCD = 20.25 square units
Let's determine if the area is correct.
Since ABCD is a square, all side lengths are equal.
Now, let's find the length of one side.
Apply the distance formula:
![√((x2-x1)^2+(y2-y1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/kfu4p323al2tz99jkfk4wp99xcyvaskbrj.png)
Let's find the length of AB.
Where:
(x1, y1) ==> A(1, -1)
(x2, y2) ==> B(5, -3)
Thus, we have:
![\begin{gathered} AB=√((5-1)^2+(-3-(-1))^2) \\ \\ AB=√(4^2+(-3+1)^2) \\ \\ AB=√(16+(-2)^2) \\ \\ AB=√(16+4) \\ \\ AB=√(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1uu7xrf19o9k8nxdf693hw37mofszpqas0.png)
The length of one side of the square is √20.
Now, to find the area of a square, we have:
![\begin{gathered} Area=l^2 \\ \\ Area=(√(20))^2 \\ \\ Area=20\text{ square units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qgrza5fhihtd5r294l7kpm5rqysgnmbrky.png)
Therefore, the area of the square is 20 square units.
This means the area is not 20.25 square units.
Therefore, the