The given points are A(3,7) and B(2,11).
First, we find the slope of the line that passes through A and B.
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Where,
![\begin{gathered} x_1=3 \\ x_2=2 \\ y_1=7 \\ y_2=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/72c89kqst7aihuulenw32x7i9p0p8lvbt2.png)
Replacing these coordinates, we have
![m=(11-7)/(2-3)=(4)/(-1)=-4](https://img.qammunity.org/2023/formulas/mathematics/college/nwenwup2uvea99wzo5hh98uxj7nyuuwc5s.png)
Now, we sue the slope, one point and the point-slope formula
![\begin{gathered} y-y_1=m(x-x_1) \\ y-7=-4(x-3) \\ y-7=-4x+12 \\ y=-4x+12+7 \\ y=-4x+19 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/114knsyc7dkgb59hqluz7uobjd7watbqpq.png)
Therefore, the equation of the line is y = -4x + 19.