Answer:
(a)(1.5, -3)
(b)(0,6)
(c)(2.37, 0), (0.63, 0)
Step-by-step explanation:
Given the equation of the parabola:

Part A
To find the vertex, first, determine the equation of the line of symmetry:

Substitute x=1.5 to find f(1.5).

The vertex of the parabola: (1.5, -3)
Part B
The vertical intercept is the point where x=0

The vertical intercept is the point (0,6).
Part C
The x-intercepts are the point where f(x)=0.

From the equation above: a=4, b=-12, c=6
Using the quadratic formula:
![\begin{gathered} x=(-b\pm√(b^2-4ac) )/(2a) \\ =\frac{-(-12)\pm\sqrt[]{(-12)^2-4(4)(6)}}{2*4} \\ =\frac{12\pm\sqrt[]{144-96}}{8} \\ =\frac{12\pm\sqrt[]{48}}{8} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a4402he289eucfmcq8av8cnjrw4f1pddmm.png)
Therefore:
![\begin{gathered} x=\frac{12+\sqrt[]{48}}{8}\text{ or }x=\frac{12-\sqrt[]{48}}{8} \\ x=2.37\text{ or }x=0.63 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lfu6enoyifmm4t4ayvcnt28rn3oqlwyy2h.png)
The coordinates of the two x-intercepts of the parabola are:
• (2.37, 0)
,
• (0.63, 0)