129k views
5 votes
If (6,39) and (-5,-49) are twoanchor points on the trend line,then find the equation of the line.y = [ ? ]x + [ ]Enter

User Tamicka
by
4.4k points

1 Answer

5 votes

Step 1: Concept

To find the equation of a line, use the two points form equation of a line formula below.


(y-y_1)/(x-x_1)\text{ = }(y_2-y_1)/(x_2-x_1)

Step 2:

Write the given data


\begin{gathered} (x_1,y_1)\text{ = ( 6, 39 )} \\ (x_2,y_2\text{ ) = ( -5, -49 )} \end{gathered}

Step 3:

Substitute the values to find the equation of a line.


\begin{gathered} \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = }\frac{-49\text{ - 39}}{-5\text{ - 6}} \\ \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = }(-88)/(-11) \\ \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = 8} \\ y\text{ - 39 = 8(x - 6)} \\ y\text{ - 39 = 8x - 48} \\ y\text{ = 8x - 48 + 39} \\ \\ y\text{ = 8x - 9} \end{gathered}

Final answer

y = [ 8 ]x + [ -9 ]

User Abdool
by
4.4k points