We are given the following system of equations:
![\begin{gathered} x+2y+z=8,(1) \\ 2x+y-z=1,(2) \\ x+y-2z=-3,(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/evsck7c2vuyvf7g1ozcgsywt4vugpqfjsx.png)
To solve the system we will add equations (1) and (2):
![x+2y+z+2x+y-z=8+1](https://img.qammunity.org/2023/formulas/mathematics/college/2t1l9i32tnf9ygftxst1yqy8nyggh5y3ru.png)
Adding like terms:
![\begin{gathered} 3x+3y=9 \\ x+y=3,(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ctzmji42n8g1b6nq7xy36ye3t2uwzadoad.png)
Now we multiply equation (2) by -2:
![-4x-2y+2z=-2](https://img.qammunity.org/2023/formulas/mathematics/college/oto7ponsh5y6un3tnqf2kcmfilngic5dcx.png)
Now we add this equation to equation (3):
![x+y-2z-4x-2y+2z=-3-2](https://img.qammunity.org/2023/formulas/mathematics/college/5b0fznx7sswmaar1vjcgoluth9yikku0wh.png)
Adding like terms:
![-3x-y=-5,(5)](https://img.qammunity.org/2023/formulas/mathematics/college/z00l3l1zgg4nvqszi0toj6u5kiy8yl6krh.png)
Now we add equations (4) and (5):
![x+y-3x-y=3-5](https://img.qammunity.org/2023/formulas/mathematics/college/1gnolc7l0og6r7jwxqr7uhfh15d6dt4jx8.png)
Adding like terms:
![-2x=-2](https://img.qammunity.org/2023/formulas/mathematics/college/on9dz94suxn0int32cago85tml0r62lups.png)
Dividing both sides by -2:
![x=-(2)/(-2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/ffuagyc9lo52gya5u2o63072vaqvohi9gn.png)
Now we replace this value of "x" in equation (4):
![\begin{gathered} x+y=3 \\ 1+y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vbmq3nyasqossxv2wi92c4fm93tae5b1fn.png)
Subtracting 1 to both sides:
![\begin{gathered} 1-1+y=3-1 \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h939d6gof294j5w7fdfshbsxoi1ksbv0e8.png)
Now we replace the values of "x" and "y" in equation (1):
![\begin{gathered} x+2y+z=8 \\ 1+2(2)+z=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jsstym0ryqqhs3yhku83v1ickg9tu0wgg.png)
Adding like terms:
![\begin{gathered} 1+4+z=8 \\ 5+z=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dx6w91sr87hm16jejiglgnu5l7xtg8dglo.png)
Subtracting 5 to both sides:
![\begin{gathered} 5-5+z=8-5 \\ z=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d1939pcmxopuhoyrxyrgb7bh3avkmd5i32.png)
Therefore, the solution of the system is:
![x=1,\text{ y=2, z=3}](https://img.qammunity.org/2023/formulas/mathematics/college/k6bzfz2o1i69ns71ngymh093zznjy8fv06.png)