State the parameters given in the question
![n=450](https://img.qammunity.org/2023/formulas/mathematics/college/6bmdjvbo92bavicub210c4jbcyfkfc4sjo.png)
The sample size n is 450
Hence, the first box n=450
![X=55](https://img.qammunity.org/2023/formulas/mathematics/college/vk1q863yfxc2edugptfmeonmf8d53hlx5b.png)
The number of students X that attended private school is 55
Hence, the second box X=55
Therefore, sample proportion is
![\begin{gathered} ^(\prime)p=(X)/(n)=(55)/(450) \\ ^(\prime)p=0.122 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dsymxq8yxgtk4m647usp4khduqimabbsae.png)
Hence, the third box is 'p=0.122
![\begin{gathered} ^(\prime)q=1-^(\prime)p \\ ^(\prime)q=1-0.122 \\ ^(\prime)q=0.878 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ynci4ayw05jhum5l16jd03vmpy7wudmhwr.png)
Hence, the forth box is 'q= 0.878
From the question, the confidence interval is 95% can be represented as
![\begin{gathered} z_(\alpha I2)=95\text{ \%=0.95} \\ \alpha=1-0.95=0.05 \\ \alpha I2=(0.05)/(2)=0.025 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wtllmo4baul83giuvyh4cfmqeolqnnljek.png)
The Z score for confidence interval of 95% is gotten from the table as 1.96
The formula for the confidence interval for p is
![^(\prime)p-z_(\alpha I2)\sqrt[]{(^(\prime)p^(\prime)q)/(n)}<p>Substitute into the formula</p>[tex]\begin{gathered} ^(\prime)p-z_(\alpha I2)z_(\alpha I2)\sqrt[]{(^(\prime)p^(\prime)q)/(n)} \\ ^(\prime)p=0.122;^(\prime)q=0.878;z_(\alpha I2)=1.96 \\ =0.122-1.96_{}\sqrt[]{(0.122*0.878)/(450)} \\ =0.122-1.96\sqrt[]{(0.107116)/(450)} \\ =0.122-1.96\sqrt[]{0.0002380356} \\ =0.122-1.966(0.015428) \\ =0.122-0.03024 \\ =0.09176 \\ =0.092(3\text{ decimal places)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/40y9fw2ctv8i1m4ps1wwxpmlvtx52jk2zj.png)
![\begin{gathered} z_(\alpha I2)\sqrt[]{(^(\prime)p^(\prime)q)/(n)}\text{was calculated to be 0.03024} \\ \text{Therefore} \\ ^(\prime)p+z_(\alpha I2)\sqrt[]{(^(\prime)p^(\prime)q)/(n)}=0.122+0.03024=0.15224 \\ =0.152(3\text{decimal places)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r5z5zl9yzmebacq62y276dfucrje0xkcq5.png)
Hence, the confidence interval is 0.092