179k views
2 votes
Find the exact solutions of the equation in the intervals [0,2pi)(Enter your answers as a comma separated list)4 sin 2x sin X = 4 cos xX= ?

1 Answer

4 votes

Step 1

Subtract 4cosx from both sides


4\text{sin}2\text{x.sinx}-4\cos x=4\cos x-4\cos x

Simplify


4\text{sin}2\text{x.sinx}-4\cos x=0

Step 2

Rewrite using trigonometric identities


\begin{gathered} \sin 2x=2sinx.\cos x \\ 4(2\sin x\text{cosx})(\sin x)-4\cos x=0 \\ 8\sin ^2(x)\cos (x)-4\cos (x)=0 \end{gathered}

Step 3

Factorize


8\sin ^2(x)\cos (x)-4\cos (x)=4\cos (x)(\sqrt[]{2}\sin (x)+1)(\sqrt[]{2}\sin (x)-1)_{}
\begin{gathered} 4\cos \mleft(x\mright)\mleft(√(2)\sin \mleft(x\mright)+1\mright)\mleft(√(2)\sin \mleft(x\mright)-1\mright)=0 \\ \end{gathered}

Solve separately for x


\begin{gathered} 4\cos x=0 \\ x=\cos ^(-1)(0) \\ x=90\text{ and }270\text{ within the range \lbrack{}0,2}\pi) \\ In\text{ radians }90^o\text{ = }(\pi)/(2),270^o=(3\pi)/(2) \\ \\ \end{gathered}
undefined

User Underpickled
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories