EXPLANATION
Given the equation
(b)
![9x^2-y^2=9](https://img.qammunity.org/2023/formulas/mathematics/college/lkfnma3v3ar1uofditqtyz4csl7zsddxmk.png)
First, we need to find the vertex applying the following formula:
The vertices (h+a, k), (h-a,k) are the two bending points of the hyperbola with center (h,k) and semi-axis (a,b)
Calculate hyperbola properties:
Hyperbola standard equation:
![((x-h)^2)/(a^2)-((y-k)^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/p9z9gumo8hk2p84uo05au4dcim97672l9q.png)
Rewrite 9x^2 -y^2 = 9 in the form of a standard hyperbola equation:
Divide by coefficient of square terms: 9
![x^2-(16)/(9)y^2=16](https://img.qammunity.org/2023/formulas/mathematics/college/s6dyvfjtfycxihedvqqzybbll71ioynv9a.png)
Divide by coefficient of square terms: 16
![(1)/(16)x^2-(1)/(9)y^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/e7ozqe81kkpgnh7k42848nog67iyqhmja8.png)
Refine:
![(x^2)/(16)-(y^2)/(9)=1](https://img.qammunity.org/2023/formulas/mathematics/college/vy7k0p62xj4qkicbnmvtiha32rueibaib2.png)
Rewrite in standard form:
![((x-0)^2)/(4^2)-((y-0)^2)/(3^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/h9q2g7moumvkub0gugekmtm4p0iq06lbjp.png)
Therefore, hyperbola properties are:
(h,k) = (0,0) , a=4, b=3
Refine:
(4,0), (-4,0)
Now we need to compute the foci:
For a right-left faccing hyperbola, the foci are defined as (h+c,k), (h-c,k), where c= sqrt(a^2+b^2) is the distance from the center (h,k) to a focus.
Computing c (we have previously calculated a=4 and b=3):
![c=\sqrt[]{4^2+3^2}=\sqrt[]{16+9}=\sqrt[]{25}=5](https://img.qammunity.org/2023/formulas/mathematics/college/k7vukrrh3ff6voucba041kwjfjlr0bim8k.png)
Refine:
Foci: (5,0), (-5,0)
Next, we need to find the asymptotes:
The asymptotes are the lines the hyperbola tends to at +- infinite
For right-left hyperbolas the asymptotes are:
![y=\pm(b)/(a)(x-h)](https://img.qammunity.org/2023/formulas/mathematics/college/t2ynjf9hgh8vwgsegmcqnk8a4jq4tyutss.png)
Substituting terms:
![y=\pm(3)/(4)(x-0)+0](https://img.qammunity.org/2023/formulas/mathematics/college/d7khmutkwzd83vb0682hv570b34z0p68u4.png)
Refine:
![y=(3x)/(4),\text{ y=-}(3x)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/2enbw8hgrazu4wcev9mzrc97c0uafhn4xt.png)
Now, we need to find the vertices:
The endpoints are:
(4,0) , (-4,0)
Now, we need to find the center:
![\text{center}=\text{ }(x^2)/(a^2)+(y^2)/(b^2)](https://img.qammunity.org/2023/formulas/mathematics/college/rdltb8xp2q1j0srluh8olrqsps3wmvx9q0.png)