35.5k views
2 votes
Find the missing side of the triangle using the Pythagorean theorem and illustrate the six trigonometric ratios of θ.

Find the missing side of the triangle using the Pythagorean theorem and illustrate-example-1
User Tholle
by
4.5k points

1 Answer

5 votes

Answer:

• The length of the missing side is 13.

,

• sin θ = 12/13, cos θ=5/13, tan θ = 12/5

,

• cosec θ = 13/12, sec θ = 13/5, cot θ = 5/12

Explanation:

Part A

First, we find the length of the missing side, MT using the Pythagorean Theorem.


\begin{gathered} Hypotenuse^2=Altitude^2+Base^2 \\ |MT|^2=|MA|^2+|AT|^2 \end{gathered}

Substitute the known values:


\begin{gathered} |MT|^2=12^2+5^2 \\ \lvert MT\rvert=√(12^2+5^2)=√(169)=13 \end{gathered}

The length of the missing side is 13.

Part B

Next, we find the six trigonometric ratios of θ.

• The side ,opposite angle ,θ = 12

,

• The side ,adjacent to ,angle θ = 5

,

• The ,hypotenuse ,= 13

(i)sin θ


\sin\theta=(Opposite)/(Hypotenuse)=(12)/(13)

(ii)cos θ


\cos\theta=(Adjacent)/(Hypotenuse)=(5)/(13)

(iii)tan θ


\tan\theta=(Opposite)/(Adjacent)=(12)/(5)

(iv)cosec θ


\cosec\theta=(1)/(\sin\theta)=(13)/(12)

(v)sec θ


\sec\theta=(1)/(\cos\theta)=(13)/(5)

(vi)cot θ


\cot\theta=(1)/(\tan\theta)=(5)/(12)

User Portable
by
4.9k points