The height of the ball (in feet) after t seconds is given by the equation:
![h(t)=182-12t-16t^2](https://img.qammunity.org/2023/formulas/mathematics/college/almte0gy4xx7hkci87mvjdad0vrgfqg4if.png)
Note that for t = 0 the height is 182 feet, the initial height. It's required to find the value of t at the moment when the ball hits the ground, that is, when h = 0:
![182-12t-16t^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/50u7h0g1i0psxn2jxs5i9z4hom982x71iv.png)
Rearranging:
![-16t^2-12t+182=0](https://img.qammunity.org/2023/formulas/mathematics/college/u4oyf1x224zq8b668blwjwzvgecld5es00.png)
This is a quadratic equation with coefficients:
a = -16, b = -12, c = 182.
We need to apply the quadratic formula:
![t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/3cgw61gskglny4a505tle5b9wokluktv58.png)
Substituting:
![t=(-(-12)\pm√((-12)^2-4(-16)(182)))/(2(-16))](https://img.qammunity.org/2023/formulas/mathematics/college/ayri8r6if7n4s9ohiic68dhql5cd3a5oew.png)
Operating:
![t=(12\pm√(144+11648))/(-32)](https://img.qammunity.org/2023/formulas/mathematics/college/tbb7gqye057gnwip6pyzausnabsi3unp31.png)
Calculating:
![t=(12\pm108.591)/(-32)](https://img.qammunity.org/2023/formulas/mathematics/college/3ujzq9ggsid41ptaj2s8vzl8ioejelse8y.png)
There is one positive solution and one negative solution. We only take the positive solution because the time cannot be negative in this context.
The positive solution is:
![t=(12-108.591)/(-32)](https://img.qammunity.org/2023/formulas/mathematics/college/b42a4rxdktg08g75t9xyg8txgsqft7yz1l.png)
Calculating: t = 3.018 seconds.
Rounding to the nearest hundredth: t = 3.02 seconds