You know that of 122 adults selected randomly from one town, 27 of them smoke.
Then, you need to use this formula for Confidence Interval:
![CI=p\pm z_{(\alpha)/(2)}\sqrt[]{(p(1-p))/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/fsywv4dxmfya7wdwga1pi01dbj1nwcyf0f.png)
Where "p" is the proportion, "z" is the value of confidence level, and "n" is the number of elements in the sample.
You need to find the 99% confidence interval for the true percentage of all adults in the town that smoke.
By definition, the value of "z" for a 99% confidence interval is:
![z_{(\alpha)/(2)}=2.57583](https://img.qammunity.org/2023/formulas/mathematics/college/t3vn77vie0b0h1yiql3rgl2hpkcmjatzms.png)
In this case:
![\begin{gathered} n=122 \\ \\ p=(27)/(122) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2p74doyek3q3w63r58rndflbpigi0yo1h.png)
Therefore, substituting values into the formula and evaluating, you get:
![CI=(27)/(122)\pm(2.57583)_{}\sqrt[]{((27)/(122)(1-(27)/(122)))/(122)}](https://img.qammunity.org/2023/formulas/mathematics/college/xc6fphwn3cahumzom2rkwfjbxsgvxmgw43.png)
![CI=(27)/(122)\pm(2.57583)_{}\sqrt[]{((27)/(122)(1-(27)/(122)))/(122)}](https://img.qammunity.org/2023/formulas/mathematics/college/xc6fphwn3cahumzom2rkwfjbxsgvxmgw43.png)
You will two values:
![CI_1=(27)/(122)+(2.57583)_{}\sqrt[]{((27)/(122)(1-(27)/(122)))/(122)}\approx31\text{\%}](https://img.qammunity.org/2023/formulas/mathematics/college/mg86xa5bvb8pvl89gfe0zv65ij88yver7z.png)
![CI_2=(27)/(122)-(2.57583)_{}\sqrt[]{((27)/(122)(1-(27)/(122)))/(122)}\approx13\text{\%}](https://img.qammunity.org/2023/formulas/mathematics/college/6x0tmypslzf86enyhmcuvjlmq25uajthr8.png)
Hence, the answer is: First option.