When dealing with an absolute value, there are two cases that must be analyzed.
Case 1: 4x-9 > 0
Then:
![|4x-9|=4x-9](https://img.qammunity.org/2023/formulas/mathematics/college/ty0d3x0mtsb0e37tdu3ytwj9qvxrg98873.png)
Solving the equation for x:
![\begin{gathered} |4x-9|=14 \\ \Rightarrow4x-9=14 \\ \Rightarrow4x=14+9 \\ \Rightarrow4x=23 \\ \Rightarrow x=(23)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ogax56mfcri3hsmxhdv6cow0yoq0b7s8f.png)
Case 2: 4x-9 < 0
Then:
![|4x-9|=-(4x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/fa6fjaeikld2zzngy1wwk56fujx8oskh59.png)
Soving the equation for x:
![\begin{gathered} |4x-9|=14 \\ \Rightarrow-(4x-9)=14 \\ \Rightarrow-4x+9=14 \\ \Rightarrow-4x=14-9 \\ \Rightarrow-4x=5 \\ \Rightarrow x=-(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2nl7swepvvotl6zrneiw8ijwg0ppd4p4o4.png)
The graph of the function f(x)=|4x-9| is:
Therefore, the solution set is:
![\begin{gathered} x_1=(23)/(4) \\ x_2=-(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l4pjcipys10cs0zfh3kgsedkk8xv9qs8jf.png)