Let us start by plotting the graph of years (x-values) and imports (y-values).
From the graph above, we can conclude that the trend appears linear. I started the year by replacing 1992 by 2yrs, 1994 by 4yrs, etc.
Therefore, the formula for the linear regression line is,
![y=ax+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/mcpu6uygesxn6n22sk2sg80sqe0qv9d97r.png)
where,
![\begin{gathered} a=409.503\approx409.50(nearest\text{ hundredth)} \\ b=1109.82_{_{_{_{_{_{}}}}}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tpd1jf4myrqrcjko2gn9mbu3qvr6xkbsz3.png)
Therefore, the linear regression line is
![y=409.50x+1109.82](https://img.qammunity.org/2023/formulas/mathematics/college/rdd9886t3iqa3hmojm7yc65fc4hcv4httb.png)
Now let us get the year import will exceed 12,000 by substituting the values of y to be 12,000 in the equation above.
![\begin{gathered} _{_{_{_{}}}}12000=409.50x+1109.82 \\ 12000-1109.82=409.50x \\ 10890.18=409.50x \\ (10890.18)/(409.50)=(409.50x)/(409.50) \\ 26.594=x \\ \Rightarrow x=26.594\approx27(nearest\text{ whole number)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ubpvzja1eln8bnbj2f5yy6hzx730c4qvnt.png)
Hence, the year in which the import will exceed 12,000 will be in the year 2017.
Finally, from the graph we find the value of r to be 0.9848.