c)rhombus
Step-by-step explanationthe slope of a line or segment is given by:
![\begin{gathered} slope=(y_2-y_1)/(x_2-x_1) \\ where \\ P1(x_1,y_1) \\ and \\ P2(x_2,y_2) \\ are\text{ the initial and end points} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a4b25tgy80zieldunccwv85kggvxawdq99.png)
so
Step 1
find the slope of the given segments
a)slope of TU
let
![\begin{gathered} P1=T=(-2,7) \\ P2=U=(0,-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7tm9qe29umvsfdujeevdlk3ub758880hcr.png)
now, replace in the expression
![\begin{gathered} slope=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ slope=(-2-7)/(0+(-2))=-(9)/(2) \\ slope_(TU)=-(9)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qn9qvba0f0tj1cqnn4ni84ttk75jf44qfl.png)
b) Slope of UV
Let
![\begin{gathered} P1=U=(0,-2) \\ P2=V=(7,-8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wiyoh9no8ji86q8iil8frl2wv9uaaldft1.png)
now, replace in the expression
![\begin{gathered} slope=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ slope=(-8-(-2))/(7-0)=(-6)/(7) \\ slope_(UV)=-(6)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/24iubzxrmryrfolormeu9ss3kh482a99hu.png)
c)slope of VW
Let
![\begin{gathered} P1=V=(7,-8) \\ P2=W=(5,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ctkjvusmprvefc93x06kyyq45an7gtzuuc.png)
now, replace in the expression
![\begin{gathered} slope=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ slope=(1-(-8))/(5-7)=(9)/(-2) \\ slope_(VW)=-(9)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pyojaiisxcpvfnd1z0z5hnbm7y18yks5f8.png)
d) slope of WT
let
![\begin{gathered} P1=W=(5,1) \\ P2=T=(-2,7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ivk0pqo19amxqqaa7uyq2te9kh63s8jlb2.png)
now, replace in the expression
![\begin{gathered} slope=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ slope=(7-1)/(-2-5)=(6)/(-7) \\ slope_(VW)=-(6)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1r6i2o10qythsdgp022kuivezye78rjg3y.png)
therefore, for the slopes the answer is
Step 2
lengths
the distance(d) between 2 points(P1 and P2) is given by:
![d=√((x_2-x_1)^2+(y_2-y_1)^2^)](https://img.qammunity.org/2023/formulas/mathematics/college/11nj573fctiifgnager4vibh22vmcp5wwz.png)
so
a) length of TU
let
![\begin{gathered} P1=T=(-2,7) \\ P2=U=(0,-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7tm9qe29umvsfdujeevdlk3ub758880hcr.png)
replace:
![\begin{gathered} d=√(\left(0-(-2\right))^2+(-2-7)^2) \\ d=√(4+81) \\ d_(TU)=√(85) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g1ga7l8twrc53h4kbqh5lo6zha3l2h22l9.png)
b) length UV
![\begin{gathered} d=√((7-0)^2+(-8-(-2))^2) \\ d=√(49+36) \\ d_(TU)=√(85) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/swddipst3liov9cdmjtrw1btysddjmv1zf.png)
c)Length VW
![\begin{gathered} d=√((5-7)^2+(1-(-8))^2) \\ d=√(4+81) \\ d_(VW)=√(85) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vdv42upsutzp68v8obzvqppp1i2j6ayevf.png)
d)length WT
![\begin{gathered} d=√((5-(-2))^2+(1-7)^2) \\ d=√(49+36) \\ d_(WT)=√(85) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mphnix7ahhd9o83k464jwrgitvbo51eqej.png)
so
Step 3
finally, we have a parallelogram where all sides are equal, this is called
rhombus
I hope this helps you