39.2k views
2 votes
x=0,0.5,1,3,3.5,4,5y= 63,72,75,81,84,90,93calculate the correlation coefficient, r.round answer to the 3 decimal places

User Kheldar
by
7.8k points

1 Answer

2 votes

In order to find the correlation coefficient r, we can use the formula:


r=\frac{7\sum ^{}_{}(xy)-\sum ^{}_{}x\sum ^{}_{}y}{\sqrt[]{\lbrack7\sum ^{}_{}x^2-(\sum ^{}_{}x)^2\rbrack\cdot\lbrack7\sum ^{}_{}y^2-(\sum ^{}_{}y)^2\rbrack}}

where the sum must be taken upon all 7 values of x and y.

So, let's find each term and then use them in the formula:


\begin{gathered} 7\sum ^{}_{}(xy)=7(0\cdot63+0.5\cdot72+1\cdot75+3\cdot81+3.5\cdot84+4\cdot90+5\cdot93) \\ =7\cdot1473=10311 \end{gathered}
\begin{gathered} \sum ^{}_{}x\sum ^{}_{}y=(0+0.5+1+3+3.5+4+5)\cdot(63+72+75+81+84+90+93) \\ =17\cdot558=9486 \end{gathered}
\begin{gathered} 7\sum ^{}_{}x^2-(\sum ^{}_{}x)^2 \\ 7\cdot(0^{2^{}}+0.5^2+1^2+3^2+3.5^2+4^2+5^2)-(0+0.5+1+3+3.5+4+5)^2 \\ 7\cdot63.5-17^2 \\ 444.5-289 \\ 155.5 \end{gathered}
\begin{gathered} 7\sum ^{}_{}y^2-(\sum ^{}_{}y)^2 \\ 7\cdot(63^2+72^2+75^2+81^2+84^2+90^2+93^2)-(63+72+75+81+84+90+93)^2 \\ 7\cdot45144-558^2 \\ 316008-311364 \\ 4644 \end{gathered}

Now, we need to use them in the formula to find r:


r=\frac{10311-9486}{\sqrt[]{155.5\cdot4644}}=\frac{825}{\sqrt[]{722142}}\cong0.9708

Finally, round the answer to the 3 decimal places, we find

r = 0.971

User Kyle Heuton
by
8.0k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories