y = 7x+6
y = x + 20
Substituting the value of y of the second equation into the first equation, we get:
x + 20 = 7x + 6
20 - 6 = 7x - x
14 = 6x
14/6 = x
7/3 = x
Replacing this value into the first equation, we get:
![\begin{gathered} y=7\cdot(7)/(3)+6 \\ y=(49)/(3)+6 \\ y=(49+6\cdot3)/(3) \\ y=(67)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vzx49fuy4seai9piw1yv7s5i9zxajnpw10.png)
The solution as an ordered pair is (7/3, 67/3)