By theorem we have the following:

And, we are given:

Then:


Now, we replace h and A:

And solve for a:

Then, the possible values for a are:
![a=\begin{cases}a_1=-(29)/(2)-\frac{\sqrt[]{409}}{2} \\ a_2=(29)/(2)-\frac{\sqrt[]{409}}{2} \\ a_3=\frac{\sqrt[]{409}}{2}-(29)/(2) \\ a_4=(29)/(2)+\frac{\sqrt[]{409}}{2} \\ \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/9u0ll7fcorfntsksiairkaahy5h64m9ytj.png)
We can see that a1, and a2 are not solutions, therefore a2 and a4 are.
So, the two possible b sides are then:
![b_2=\sqrt[]{25^2-((29)/(2)-\frac{\sqrt[]{409}}{2})^2}\Rightarrow b_2\approx24.99](https://img.qammunity.org/2023/formulas/mathematics/college/wedn374ffx0gv7zep6j1ehod7m5zk7hc3q.png)
and:
![b_4=\sqrt[^{}]{25^2-((29)/(2)+\frac{\sqrt[]{409}}{2})^2}\Rightarrow b_(4\approx)15.50](https://img.qammunity.org/2023/formulas/mathematics/college/c6o4lmbh9tagh6owwseksfnfxdgcphzuz3.png)
So, the lengths of the two sides can be:
a = 4.38 and b = 24.99
or
a = 24.61 and b = 15.50