2.6k views
0 votes
State the number of possible real zeros and turning points of f(x) = x^7 – 6x^6 + 8x^5. Then determine all of the real zeros by factoring. 1) 7 real zeros and 6 turning points; 0, 2, and 42) 7 real zeros and 6 turning points; 0, –2, and –43) 6 real zeros and 5 turning points; 0, 2, and 44) 6 real zeros and 5 turning points; 0, –2, and –4

1 Answer

5 votes

Step 1

The given equation is


f(x)=x^7-6x^6+8x^5

Required: To find the real zeroes by factorization and the turning points.

Step 2

Find the number of real zeroes


\begin{gathered} x^7-6x^6+8x^5=0 \\ x^5\mleft(x-2\mright)\mleft(x-4\mright)=0 \\ x^5=\text{ 0} \\ x\text{ = 0 five times} \\ ^{}or\text{ } \\ x-2\text{ = 0} \\ x=\text{ 2} \\ or \\ x-4=0 \\ x=\text{ 4} \\ \text{Therefore, there are 7 real zeroes} \end{gathered}

Step 3

Find the number of turning points.


f^(\prime)(x)\text{ = }7x^6-36x^5+40x^4
\begin{gathered} As\text{ se}en\text{ from the differential, the number of turning points is found by subtracting 1 from the highest power of the function.} \\ \text{Hence, the number of turning points = 7-1 = 6} \\ \text{There are 6 turning points} \end{gathered}

Therefore, there are 7 real zeroes and 6 turning points; 0, 2 and 4

The answer is option A

User Pedro Vale
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories