we have the function
![f(x)=2x^2+16x+31](https://img.qammunity.org/2023/formulas/mathematics/college/wz9larth6n0ol8u0zk643dzh6g112l9hxx.png)
This is a vertical parabola open upward
The vertex is a minimum
Convert the given equation into a vertex form
![f(x)=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/lv6wh92oxxg1yzd73cyhfmkxhau9bpvca1.png)
where
(h,k) is the vertex
so
step 1
factor the leading coefficient 2
![\begin{gathered} f(x)=(2x^2+16x)+31 \\ f(x)=2(x^2+8x)+31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vv5hn7zjq2sue6fpklh3znkzph8qa026eo.png)
step 2
Complete the square
![\begin{gathered} f(x)=2(x^2+8x+4^2-4^2)+31 \\ f(x)=2(x^2+8x+4^2)+31-32 \\ f(x)=2(x^2+8x+4^2)-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rstwg22epyi26hrobo1waubrde2oar2qqp.png)
step 3
Rewrite as a perfect square
![f(x)=2(x+4)^2-1](https://img.qammunity.org/2023/formulas/mathematics/college/g3fwn6kv4ez1noqzfdhhuujq7cfscurgl5.png)
The vertex is the point (-4,-1)
Find out the y-intercept (value of f(x) when the value of x=0)
In the original expression
![\begin{gathered} f(x)=2(0)^2+16(0)+31 \\ f(x)=31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/61oh49ii0ie2o3c2yjx0azxr6xrihfx4m5.png)
The y-intercept is the point (0,31)
using a graphing tool
Find out another point
For x=-2
substitute
![\begin{gathered} f(x)=2(-2+4)^2-1 \\ f(x)=2(2)^2-1 \\ f(x)=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qr9ecohm8wx4mg5dnvj4qj7bm4a4xh7txq.png)
so
the other point is (-2,7)