6) One of the main characteristics of the logarithmic function is that
![\text{domain}(\log _b(x))=(0,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/96jc9ezl54zi5hmbfhf6ycab7f7nf0vnd1.png)
For b>0. Then, in our case, x-2 has to be always greater than zero; thus,
![\begin{gathered} x-2>0 \\ \Rightarrow x>2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3xzono4hmgzxtk93jf7i2i9ansfyrbbv7j.png)
The domain of f(x) is
![\text{domain}(f(x))=x\in(2,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/t00uy4416ujgry26f65uglf14ojjclx50p.png)
Given the domain, we can calculate the range by evaluating the function in the extremes of the interval
![\lim _(x\to2)f(x)=\lim _(x\to2)\log _5(x-2)-1=-\infty-1=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/or7i34ehz81am884dwqyj11o45n643ak9g.png)
Any function of the form logb(x) ->-infinite when x->0
Similarly,
![\lim _(x\to\infty)f(x)=\lim _(x\to\infty)\log _5(x-2)-1=\infty-1=\infty](https://img.qammunity.org/2023/formulas/mathematics/college/hxjrjj0tqdo3jz4k0oalsjap5o9ch7q6z8.png)
Then, the range of the function is
![\text{range}(f(x))=(-\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/kyjzg1koco3f2yin5h79wokgje3ucd5tkr.png)
In order to calculate the range of the function, we answer the third part of the question:
As x->infinite, f(x)->infinite
And
As x->2, f(x)->-infinite
To calculate the x-intercept, set f(x)=0 and solve for x, as follows
![\begin{gathered} f(x)=0 \\ \Rightarrow\log _5(x-2)-1=0 \\ \Rightarrow\log _5(x-2)=1 \\ \Leftrightarrow5^1=x-2,\text{ definition of logarithm} \\ \Rightarrow x=7 \end{gathered}]()
The x-intercept is x=7
The only asymptote is when x->2 because, in that case, f(x)->-infinite.
Then, the asymptote is x=2
It's not possible to exactly draw a logarithmic function by hand; however, we can use the information about the asymptote and the x-intercept to be more precise.
The graph of the function is
Table of values of f(x) (3 different values of x)
We already found that f(7)=0, the first value of the table is then
![\begin{gathered} x\to y \\ 7\to0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nz6gih8nvryb3e11e4mh5bxs7pl9mc65k5.png)
(7,0)
Then,
![\begin{gathered} x=3 \\ \Rightarrow f(x)=\log _5(3-2)-1=\log _5(1)-1=0-1=-1 \\ \Rightarrow(3,-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8iq7z3iqr262a2n5y1bng357e9d9gh9g7y.png)
(3,-1)
And
![\begin{gathered} x=4 \\ \Rightarrow f(x)=\log _5(4-2)-1=\log _5(2)-1=(\ln(2))/(\ln(5))-1\approx-0.56932\ldots \\ \Rightarrow(4,-0.56932\ldots) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2kb9wmo409ur3pm9ksvdmutyezgbgmqz48.png)
(4, -0.56932...)