Answer: A.
![\frac{\operatorname{\ln}(1.22)}{5}]()
Step-by-step explanation
We are given the equation:
![A(t)=3,531\cdot e^((rt))](https://img.qammunity.org/2023/formulas/mathematics/college/10nrjr9mh86xsqg6zywmml9c35txugx0ow.png)
As we are said that the account balance is $4,313 after 5 years, then we can replace the values as follows:
![4,313=3,531e^((r\cdot5))](https://img.qammunity.org/2023/formulas/mathematics/college/7s13mxsbqcn1hjspv7fzrb4hwgmke0oaft.png)
Thus, we have to isolate for r:
![(4,313)/(3,531)=(3,531e^((r*5)))/(3,531)](https://img.qammunity.org/2023/formulas/mathematics/college/h63nwckxogtf8cq7s2eatcpt39yus8maui.png)
![1.22=e^(5r)](https://img.qammunity.org/2023/formulas/mathematics/college/h6uccxh1ojcicyxiftfc8vtgwp5sty4p5q.png)
Then, we apply a natural logarithm to both sides of the equation to cancel out the Euler constant.
![\ln(1.22)=\ln(e^(5r))](https://img.qammunity.org/2023/formulas/mathematics/college/e7wc8944oa0510mev4j7ytk2xhjq5fol7k.png)
![\operatorname{\ln}(1.22)=5r]()
Finally, we divide both sides of the equation against 5:
![r=(\ln(1.22))/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/imdoycdvxkcjr4z0p7g7mmd0if7xe2avxt.png)