Answer:
• The future value is $635.72
,
• The compound interest is $75.72.
Explanation:
To find the future value at compound interest, we use the formula below:
![A(t)=P(1+(r)/(k))^(nk)\text{ where }\begin{cases}P=\text{Principal Invested} \\ r=\text{Interest Rate} \\ k=\text{Number of compounding periods}\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2zpidzqzvrneuq5unw7681oro4gy5s4e41.png)
Given:
• Principal, P= $560
,
• Rate, r = 4.25% =0.0425
,
• Period, k = 4 (Quarterly)
,
• Time, n = 3 years
Substitute these values into the formula:
![\begin{gathered} A(t)=560(1+(0.0425)/(4))^(4*3) \\ A(t)=\$635.72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a0rguzvd3wbzibji2ayg2kvlzo10nd5ayg.png)
The future value is $635.72
Next, we find the compound interest:
![\begin{gathered} Interest=Future\text{ Value-Principal} \\ =635.72-560 \\ =\$75.72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mzt1e6tjknneidcqcjmh4bjdvsmbtedr2b.png)
The compound interest is $75.72.