Given:
A line passes through the points A (1,3) and B (7,1).
The objective is,
a) To find gradient of AB.
b) To find gradient of a line perpendicular to AB.
c) To find the equation line passing throught (4,2) and perpendicular to AB.
Step-by-step explanation:
a)
Consider the given coordinates of line AB as,
![\begin{gathered} (x_1,y_1)=(1,3) \\ (x_2,y_2)=(7,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6rbze012sqzbt3ljzpgofyp9rrbo1jdpgn.png)
The general formula to find the gradient of line AB is,
![m_(AB)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/bm91ci913618x7czet7wykcjrqkzbtv72i.png)
To find gradient of AB:
Substitute the given coordinates in the above gradient formula.
![\begin{gathered} m_(AB)=(1-3)/(7-1) \\ =(-2)/(6) \\ =-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6zlyeiox3a5ytw5uyoafs0h8uy6uutq38b.png)
Hence, the gradient of line AB is -3.
b)
To find gradient of perendicular line:
Consider the perpendicular line as CD.
The product of gradients of two perpendicular lines will be -1.
So, the gradient of the perpendicular line CD can be calculated as,
![\begin{gathered} m_(AB)* m_(CD)=-1 \\ m_(CD)=(-1)/(m_(AB)) \\ m_(CD)=-(1)/(-3) \\ m_(CD)=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hee3wia920klx3t1zio7hl2ozortdu1qdt.png)
Hence, the gradient of a line perndicular to AB is (1/3).
c)
To find equation of line perpendicular to AB:
Since, the perpendicular line passes through the point,
![(x_1,y_1)=(4,2)](https://img.qammunity.org/2023/formulas/mathematics/college/sr6h74iynw2uj4wgzs4zig2ly5viwe4zk1.png)
From part (b) the gradient of this perpendicular line is (1/3),
Then, the equation can be calculated using point slope fomula as,
![\begin{gathered} y-y_1=m(x-x_1) \\ y-2=(1)/(3)(x-4) \\ y-2=(x)/(3)-(4)/(3) \\ y=(x)/(3)-(4)/(3)+2 \\ y=(x)/(3)+0.666666\ldots.. \\ y=(x)/(3)+0.67 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7zivka6ghojlft9v13uiiaokvyz35n7f6u.png)
Hence, the equation of perpendicular line is y = (x/3) + 0.67.
Answers:
a) Gradient AB : (-3)
b) Gradient CD : (1/3)
c) Equation of perpendiular line is y = (x/3) + 0.67.