Problem #2:
Given 45-45-90 triangle
The triangle is an isosceles right triangle
so, the legs are congruent ⇒ a = b
Using the Pythagorean theorem

as shown, hypotenuse = 7√2
so,
![\begin{gathered} a^2+b^2=(7\sqrt[]{2})^2 \\ a^2+b^2=98\rightarrow(a=b) \\ a^2+a^2=98 \\ 2a^2=98 \\ a^2=(98)/(2)=49 \\ a=\sqrt[]{49}=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/913m0a70jvohpwxg6xe5h8yyb7b7z790c7.png)
so, the answer will be:

Another method:
The length of the side opposite to the angle 45 = hypotenuse/√2
So,
![a=b=\frac{7\sqrt[]{2}}{\sqrt[]{2}}=7\operatorname{cm}]()