A.
The domain of a function is the complete set of possible values of the independent variable:
![\begin{gathered} _{\text{ }}Domain\colon\mleft\lbrace-5,1,3\mright\rbrace \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/un1hipurhqwna8yvfkl8dsyi972tfalov9.png)
The range of a function is the complete set of possible values of the dependent variable:
![_{\text{ }}Range\colon\mleft\lbrace-4,-2,0,2,4\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/c959z1121unjpxcpnp7l02ocw4w33hkakx.png)
A function is a specific type of relation in which each input value has one and only one output value.
Since:
(-5,4) and (-5,4) and (1,2) and (1,-2) belong to the relation. We can conclude that the relation is not a function.
B.
![\begin{gathered} _{\text{ }}Domain\colon\mleft\lbrace-3,-1,0,1,3\mright\rbrace \\ _{\text{ }}Range\colon\mleft\lbrace-1,1,6\mright\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/64gk9gba0903tngxznf7v2439fbsampu3o.png)
Since:
![\begin{gathered} x1\\e x2\\e x3\\e x4\\e x5 \\ -3\\e-1\\e0\\e1\\e3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tm0tvdy3fl46eaj4t4nquxdmmlpa2xebru.png)
We can conclude that the relation is a function