the sum of internal angles of a 4-sides figure is 360° ever then
![P+Q+S+R=360](https://img.qammunity.org/2023/formulas/mathematics/college/j1aztaakkvhxkm66jdek7miqbkyl2mjavz.png)
we know P and R is a right angles then is 90°, then we can replace
![22+Q+S+90=360](https://img.qammunity.org/2023/formulas/mathematics/college/exvajdll8sf58o3s7aw32z0tm1mps9jama.png)
simplify
![Q+S+112=360](https://img.qammunity.org/2023/formulas/mathematics/college/ngv46i8jmf3s3gquc421pqd8xy2o36gnes.png)
and the angles Q and S are the same because the kite is symmetrical then Q=S
and we can replace Q=S
![S+S+112=360](https://img.qammunity.org/2023/formulas/mathematics/college/mdde411smja8nwypqvxjlvrfrw3j159of2.png)
simplify
![2S+112=360](https://img.qammunity.org/2023/formulas/mathematics/college/4dh0vhevqkzm2altummtd29x04sf534bum.png)
and solve for S
![\begin{gathered} 2S=360-112 \\ 2S=248 \\ S=(248)/(2) \\ \\ S=124 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/20wptifrasrqehzlwvbsfqj5xx1bsspoe9.png)
then right option is D 124