129k views
5 votes
Question 7 of 10For any positive numbers a, b, and d, with b 1,logA. log, a + logodB. log, a-log, dC. d.logbaO D. log, a log, d

Question 7 of 10For any positive numbers a, b, and d, with b 1,logA. log, a + logodB-example-1

1 Answer

6 votes

Answer:

Option B

Explanation:

Given the logarithm expression:


\begin{gathered} \log_b\left((a)/(d)\right) \\ a,b.d\text{ positive numbers} \\ b\cancel{=}1 \end{gathered}

By the quotient law of logarithms:


$$\log _(b)\left((M)/(N)\right)=\log _(b) M-\log _(b) N$$

Therefore:


\operatorname{\log}_b\left((a)/(d)\right)=\log_b\left(a\right)-\log_b\left(d\right)

Option B is correct.

User Kravi
by
3.6k points