Solution:
The function is given below as
![\begin{gathered} g(x)=(x+4)/(x-1) \\ h(x)=2x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3c9n8rah5bxagpq9ej5tbwijus56ukbp6q.png)
To figure out
![(goh)(x)](https://img.qammunity.org/2023/formulas/mathematics/college/28wmv2iv5s65g8kgcy8006wgg17wbniodw.png)
To do this , we will substitute x= 2x-1 in g(x)
![\begin{gathered} g(x)=(x+4)/(x-1) \\ g(h)(x)=(2x-1+4)/(2x-1-1) \\ g(h)(x)=(2x+3)/(2x-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fjw71smer6qrpmdqs06xeeprtu1j1y3qqi.png)
Hence,
The composte function will be
![(goh)(x)=(2x+3)/(2x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/83778lmlkiggby6eqpe6lgwioej6wug4gq.png)
Step 2:
To figure out the domain,
In mathematics, the domain of a function is the set of inputs accepted by the function.
Hence,
The domain of the function is
![\begin{bmatrix}\mathrm{Solution:}\:&\:x<1\quad \mathrm{or}\quad \:x>1\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:1\right)\cup \left(1,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/2i2i7a4dd64lzq29ej7ts1qlumgkxbn24j.png)