We have the fraction
![(7)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/olqj7hmdfu9c6qkwfny1jew6wm5pyou82r.png)
We want to rewrite it as
![(x)/(20)](https://img.qammunity.org/2023/formulas/mathematics/high-school/10t1w961k6evd67sc7tc2woqbq5kylx28q.png)
Where x is a number that we don't know, but it will turn the fraction equivalent, then we can say that
![(7)/(4)=(x)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/lsy4licnro90l5iboy6zwisl2f1jk5n565.png)
We can do a cross multiplication and solve it for x
![\begin{gathered} 4x=7\cdot20 \\ \\ x=(7\cdot20)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/holc0tnpqafq0a8a6wiqvydalxrmt1g29w.png)
Then in fact, to discover the new numerator we must do
![\text{ new numerator = }\frac{\text{ old numerator x LCD}}{\text{ old denominator}}](https://img.qammunity.org/2023/formulas/mathematics/college/crm7h0wfe9hf386spnuaovlokfe4kn6itb.png)
Let's do it then!
![\begin{gathered} \text{ new numerator =}(7\cdot20)/(4) \\ \\ \text{ new numerator }=35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o127kln70xqrp8p7g4wq8c78olrewdyp6k.png)
Then
![(7)/(4)=(35)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/v9ohtpkhwczyr9uvs0m803r5n4omrm42ex.png)
The equivalent fraction is 35/20
Now for the second question, we can use the logic
![\begin{gathered} \text{ new numerator = }\frac{\text{ 9 x 20}}{10} \\ \\ \text{new numerator = {}18} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cf4h97ilsz3vhzqmc7xqpr3tfm6wxknnsi.png)
The equivalent fraction is
![(9)/(10)=(18)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/4s1ltjlgu70u1wvywjh55zmu8gj9imdh5h.png)
Final answers:
![\begin{gathered} (7)/(4)=(35)/(20) \\ \\ (9)/(10)=(18)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ir0jirfciqmyyvddv59dg2w855ltntsz06.png)