We will determine the standard deviation as follows:
*First we have to remember the expression:
![\sigma=\sqrt[]{(1)/(N)\sum ^N_(i=1)(x_i-\mu)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/cv5iloou72j1pl0ey9ivyvr04ztk84zzs2.png)
Now, we determine the count (N), this is N = 7 [Since there are 7 vvalues on the dataset].
Second: We calculate the sum:
![\sum ^7_(i=1)(x_i-\mu)^2](https://img.qammunity.org/2023/formulas/mathematics/college/c0q6i06bkoxc9yorkeupgrtqvf5zomdmi9.png)
Bu for this, we will determine the mean (miu), and:
![\mu=2092.8571428571](https://img.qammunity.org/2023/formulas/mathematics/college/ogs84uzrmdyug6h97owo94upp1z9d13kpv.png)
Thus:
![.](https://img.qammunity.org/2023/formulas/mathematics/college/q3s6p7b8k5x553vwrcvncb13vdf3mkwzt1.png)
![\sigma=\sqrt[]{8163.2653061224}\Rightarrow\sigma=90.350790290525](https://img.qammunity.org/2023/formulas/mathematics/college/ip24gmo2cdxdqvvpmubdcdn81c7wyq8b1z.png)
So, the standard deviation is aproximately 90.