As Jenna weighed 250 pounds in August, this will represent 100%
![\begin{gathered} 250lb\rightarrow100percent \\ 280lb\rightarrow xpercent \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwgkhfmsd1ugw5t831r558zufkmjtx420x.png)
This relation leads to the next equation
![\begin{gathered} x_{\text{percent}}=\frac{280lb\cdot100_{\text{percent}}}{250lb} \\ \Rightarrow x_{\text{percent}}=\frac{28000_{\text{percent}}}{250} \\ \Rightarrow x_{\text{percent}}=112_{\text{percent}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4kutmcf32se97tfecuet1fa8hfd97eog7i.png)
Therefore, the increment in weight is given by
![x_{\text{percent}}-100=12_{\text{percent}}](https://img.qammunity.org/2023/formulas/mathematics/college/hnvwgadqup3cg1inf2h0koa4wgzt99gszh.png)
So, the percent increase is 12%
A way of making sure our answer is correct is by doing the next operation
![250(1+0.12)=250(1.12)=280](https://img.qammunity.org/2023/formulas/mathematics/college/vl589q0qbh0zovwmzf0lsr4q2i79g9lqqu.png)