121k views
5 votes
Given that cosine of theta equals 8 over 17 and that θ lies in Quadrant IV, what is the exact value of sin 2θ?

User Trickyzter
by
5.3k points

1 Answer

3 votes

step 1

Find out sine of theta

Remember that

If θ lies in Quadrant IV

then

the value of sine is negative


\sin ^2\theta+\cos ^2\theta=1

substitute the value of cosine


\sin ^2\theta+((8)/(17))^2=1
\sin ^2\theta=1-(64)/(289)
\begin{gathered} \sin ^2\theta=(225)/(289) \\ \sin ^{}\theta=-(15)/(17) \end{gathered}

step 2

we know that


\sin 2\theta=2\sin \theta\cdot\cos \theta

substitute given values


\sin 2\theta=2\cdot(-(15)/(17))\cdot((8)/(17))
\sin 2\theta=-(240)/(289)

Simplify

User Eladerezador
by
4.6k points