136k views
14 votes
Given that u =< 2,12 >, and z =< -7,5 >

If w = u + z, what is the value of || w ||? (answer should be accurate to 3 decimal places

User Berk
by
4.1k points

1 Answer

13 votes

Using the dot product:

For any vector x, we have

||x|| = √(x • x)

This means that

||w|| = √(w • w)

… = √((u + z) • (u + z))

… = √((u • u) + (u • z) + (z • u) + (z • z))

… = √(||u||² + 2 (u • z) + ||z||²)

We have

u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37

z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74

u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46

and so

||w|| = √((2√37)² + 2•46 + (√74)²)

… = √(4•37 + 2•46 + 74)

… = √314 ≈ 17.720

Alternatively, without mentioning the dot product,

w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩

and so

||w|| = √((-5)² + 17²) = √314 ≈ 17.720

User Jeremy Moritz
by
4.5k points