136k views
14 votes
Given that u =< 2,12 >, and z =< -7,5 >

If w = u + z, what is the value of || w ||? (answer should be accurate to 3 decimal places

User Berk
by
8.5k points

1 Answer

13 votes

Using the dot product:

For any vector x, we have

||x|| = √(x • x)

This means that

||w|| = √(w • w)

… = √((u + z) • (u + z))

… = √((u • u) + (u • z) + (z • u) + (z • z))

… = √(||u||² + 2 (u • z) + ||z||²)

We have

u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37

z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74

u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46

and so

||w|| = √((2√37)² + 2•46 + (√74)²)

… = √(4•37 + 2•46 + 74)

… = √314 ≈ 17.720

Alternatively, without mentioning the dot product,

w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩

and so

||w|| = √((-5)² + 17²) = √314 ≈ 17.720

User Jeremy Moritz
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories